1、函数、极限与连续 2、导数与微分 3、中值定理与导数应用 4、原函数与不定积分概念,不定积分换元法。
大家好,今天美滋味百科小编关注到一个比较有意思的话题,就是关于专升本数学考哪些内容的问题,于是美滋味百科小编就整理了5个相关介绍专升本数学考哪些内容的解答,让我们一起看看吧。
文章目录:
一、专升本高等数学考试范围是什么?
1、函数、极限与连续
2、导数与微分
3、中值定理与导数应用
4、原函数与不定积分概念,不定积分换元法,不定积分分部积分法
5、定积分及其应用
6、微分方程
7、空间解析几何向量代数
8、多元函数微分学
9、多元函数积分学
10、无穷级数
扩展资料:
专升本的考试科目:
1、文史类:政治、英语、大学语文。
2、艺术类:政治、英语、艺术概论。
3、理工类:政治、英语、高等数学(一)。
4、经济管理类:政治、英语、高等数学(二)。
5、法学类:政治、英语、民法。
6、教育学类:政治、英语、教育理论。
7、农学类:政治、英语、生态学基础。
8、医学类:政治、英语、医学综合。
参考资料来源:
参考资料来源:
二、专升本数学考哪些?
数学考试范围是:函数、极限与连续;导数与微分;中值定理与导数应用;原函数与不概念、不定积分换元法、不定积分;定积分及其应用;微分方程;空间解析几何向量代数;多元函数微分学;多元函数积分学;无穷级数。
高数一包括:、线性代数和概率统计;高等数学占60%,线性代数20%,20%。
高数二包括:高等数学和线性代数;不考无穷级数、线面积分、概率统计。
专升本高数在出题上区别于普通高校的期末考试题及其他测试,也就是说每道题都只考单独的一个知识点,不具有综合性,题量大,但题目简单,只要你学会了一个知识点,就能保证会做一道题。
专升本数学所有考点分为8大模块:
第一模块:函数、极限和连续。包括四个内容:(1)高数主要研究对象--函数 (2)研究工具--极限 (3)无穷小量、无穷大量 (4)函数的连续性。
第二模块:一元函数的微分学。重要内容:(1)导数与微分 (2)与洛必达法则 (3)一元函数求导 (4)函数的单调性与极值。
第三模块:积分分为:定积分与不定积分。解不定积分或者定积分的方法:(1)直接法 (2)分布积分法 (3)换元法。
第四模块:常微分方程 分为:一阶微分方程、高阶微分方程和二阶线性微分方程;一阶微分方程考的比较多。
第五模块:向量代数、空间解析几何。过渡章节,为后面学习二元函数的微积分打基础。
第六模块:多元函数的微分学。多元微分(多元函数求偏导)和(和隐函数的微分法)、(多元函数的极值应用)。
第七模块:多元函数积分学重点掌握和曲线积分。
第八模块:无穷极数 工程中的近似计算会用到。包括:竖向极数和幂级数。
三、专升本高等数学考什么
专升本高等数学考内容有:
函数、极限与连续、微分方程、空间解析几何向量代数、一元函数微分、一元函数积分、多元函数微分学、多元函数积分学、无穷级数等有关知识点。
函数、极限与连续重点考查极限的计算、已知极限确定原式中的未知参数、函数连续性的讨论、间断点类型的判断、无穷小阶的比较、讨论连续函数在给定区间上零点的个数、确定方程在给定区间上有无实根。
通常认为,高等数学是由微积分学,较深入的代数学、几何学以及它们之间的交叉内容所形成的一门基础学科。主要内容包括:数列、极限、微积分、空间解析几何与线性代数、级数、常微分方程。工科、理科、财经类研究生考试的基础科目。
四、专升本高数考试范围是什么?
数学考试范围是:函数、极限与连续;导数与微分;中值定理与导数应用;原函数与不概念、不定积分换元法、不定积分;定积分及其应用;微分方程;空间解析几何向量代数;多元函数微分学;多元函数积分学;无穷级数。
具体而言:
高数一包括:、线性代数和概率统计;高等数学占60%,线性代数20%,20%。
高数二包括:高等数学和线性代数;不考无穷级数、线面积分、概率统计。
专升本的考试科目:
1、文史类:政治、英语、。
2、艺术类:政治、英语、艺术概论。
3、理工类:政治、英语、高等数学(一)。
4、经济管理类:政治、英语、高等数学(二)。
5、法学类:政治、英语、民法。
6、教育学类:政治、英语、教育理论。
7、农学类:政治、英语、生态学基础。
8、医学类:政治、英语、医学综合。
五、专升本高等数学考什么?难不难考?
专升本高等数学考什么?难不难考?如何备考才能取得高分?下面就来给考生解答,希望对考生有帮助。
专升本高等数学考试科目:
经济数学,分为微积分,线性代数,概率统计,但是在专升本中主要考的是微积分。
专升本高等数学常考内容:
1 常微分方程
重点考查一阶微分方程的通解或特解、二阶线性常系数齐次和非齐次方程的特解或通解、微分方程的建立与求解。
2 向量代数与空间解析几何
主要考查向量的运算、平面方程和直线方程及其求法、平面与平面、平面与直线、直线与直线之间的夹角,并会利用平面、直线的相互关系(平行、垂直、相交等))解决有关问题等,该部分一般不单独考查,主要作为曲线积分和曲面积分的基础。
3 函数、极限与连续
重点考查极限的计算、已知极限确定原式中的未知参数、函数连续性的讨论、间断点类型的判断、无穷小阶的比较、讨论连续函数在给定区间上零点的个数、确定方程在给定区间上有无实根。
4 一元函数微分
重点考查导数与微分的定义、函数导数与微分的计算(包括隐函数求导)、利用洛比达法则求不定式极限、函数极值与最值、方程根的个数、函数不等式的证明、与中值定理相关的证明、在物理和经济等方面的实际应用、曲线渐近线的求法。
5 一元函数积分
重点考查不定积分的计算、定积分的计算、广义积分的计算及判敛、变上限函数的求导和极限、利用积分中值定理和积分性质的证明、定积分的几何应用和物理应用。
6 多元函数微分
重点考查多元函数极限存在、连续性、偏导数存在、可微分及偏导连续等问题、多元函数和隐函数的一阶、二阶偏导数求法、有条件极值和无条件极值。另外,数一还要求掌握方向导数、曲线的切线与法平面、曲面的切平面与法线。
7 多元函数积分
重点考查二重积分在直角坐标和极坐标下的计算、累次积分、积分换序。此外,部分学校的数学还要求掌握简单的三重积分的计算方法。
8 无穷级数(部分学校不考)
重点考查正项级数的基本性质和敛散性判别、一般项级数绝对收敛和条件收敛的判别、幂级数收敛半径、收敛域及和函数的求法以及幂级数在特定点的展开问题。
既然高等数学这么难,那么我们可以选择一些不考高等数学的专业:
文史类:法学、小学教育、行政管理、文化产业管理、汉语言文学、汉语言文学(非师范类)
历史学、人文教育、学前教育、思想政治教育、政治学与行政学、广告学、应用心理学、文秘教育、社会工作、教育学、新闻学、 广播电视新闻学 。
医学类:临床医学、护理学、麻醉学、医学影像学、医学检验、针灸推拿学、中西医、中西医临床医学、应用心理学。
艺术类:艺术设计、美术学、广播电视编导、音乐学、音乐表演、舞蹈学、 舞蹈编导、表演、动画、摄影、播音与主持艺术。
体育类:体育教育。
自考/成考有疑问、不知道如何总结自考/成考考点内容、不清楚自考/成考报名当地政策,点击底部咨询官网,免费领取复习资料:
到此,以上就是美滋味百科小编对于专升本数学考哪些内容的问题就介绍到这了,希望介绍关于专升本数学考哪些内容的5点解答对大家有用。
还没有评论,来说两句吧...