大家好,今天美滋味百科小编关注到一个比较有意思的话题,就是关于行最简形矩阵定义的问题,于是小编就整理了5个相关介绍行最简形矩阵定义的解答,让我们一起看看吧。
什么是行简化矩阵?
行简化矩阵是指线性代数中的某一类特定形式的矩阵。
在阶梯形矩阵中,若非零行的第一个非零元素全是1,且非零行的第一个元素1所在列的其余元素全为零,就称该矩阵为行最简形矩阵。
行最简形矩阵是由方程组唯一确定的,行阶梯形矩阵的行数也是由方程组唯一确定的。
行最简形矩阵是怎么定义的?
行最简形矩阵定义:是指线性代数中的某一类特定形式的矩阵。
矩阵的行初等变换:
(1)对调两行;
(2)以非零数k乘以某一行的所有元素;
(3)把某一行所有元素的k倍加到另一行对应元素上去。
将定义中的“行”换成“列”,即得到矩阵的初等列变换的定义。矩阵的初等行变换与矩阵的初等列变换,统称为矩阵的初等变换。
有如下定理成立:
任一矩阵可经过有限次初等行变换化成阶梯形矩阵;
任一矩阵可经过有限次初等行变换化成行最简形矩阵;
矩阵在经过初等行变换化为最简形矩阵后,再经过初等列变换,还可以化为最简形矩阵,因此,任一矩阵可经过有限次初等变换化成标准形矩阵。
什么叫行阶梯形矩阵?什么叫行最简形矩阵?
定义 一个行阶梯形矩阵若满足 (1) 每个非零行的第一个非零元素为1; (2) 每个非零行的第一个非零元素所在列的其他元素全为零,则称之为行最简形矩阵.定义 如果一个矩阵的左上角为单位矩阵,其他位置的元素都为零,则称这个矩阵为标准形矩阵.( 区别看定义就行了) 还有还有最简形矩阵不一定是阶梯形矩阵,而阶梯形矩阵一定是最简形矩阵
什么是行阶梯形矩阵,行最简矩阵。说的通俗点?
阶梯形矩阵的特点:每行的第一个非零元的下面的元素均为零,且每行第一个非零元的列数依次增大,全为零的行在最下面
行简化矩阵的特点:每行的第一个非零元均为1,其上下的元素均为零,且每行第一个非零元的列数依次增大,全为零的行在最下面。
列最简矩阵定义?
最简形矩阵一般指最简阶梯形矩阵。
任何一个非零矩阵总可以经过有限次初等变换为阶梯形矩阵和最简阶梯形矩阵。阶梯形矩阵:
1、若有零行(元素全为0的行),则零行应在最下方。
2、非零首元(即非零行的第一个不为零的元素)的列标号随行标号的增加而严格递增,则称此矩阵为阶梯形矩阵。
到此,以上就是美滋味百科小编对于行最简形矩阵定义的问题就介绍到这了,希望介绍关于行最简形矩阵定义的5点解答对大家有用。
还没有评论,来说两句吧...